Chapter - 4

CHEMICAL KINETICS

1 MARKS QUESTION

1. The gas phase decomposition of acetaldehyde

Follows the rate law.

What are the units of its rate constant.

Ans. Atm^{-1/2}sec⁻¹

2. State the order with respect to each reactant and overall reaction.

$$H_2O + 3I^- + 2H^+ \rightarrow 2H_2O + I_3^-$$

Rate =
$$k[H_2O_2]^1[I^1]^1$$

Ans. Order of reaction= 1+1= 2

3. Give one example of pseudo first order reaction.

4. The conversion of molecules X to Y follows the second order of kinetics. If concentration of X is increased 3 times, how will it affect the rate of formation of Y.

Ans. Rate =
$$k [A]^2$$

= $k [3A]^2$
= $k [9a]^2$

The rate of formation will become nine times.

5. The rate law for a reaction is Rate = $K [A] [B]^{3/2}$

Can the reaction be an elementary process? Explain.

Ans. No, an elementary process would have a rate law with orders equal to its molecularities and therefore must be in integral form.

- 6. What do you understand by 'rate of reaction'?
- **7.** Name the factors on which the rate of a particular reaction depends.
- 8. Why rate of reaction does not remain constant throughout?
- **9.** Define specific reaction rate or rate constant.

10. What is half-life period of a reaction?

2 MARKS QUESTION

 The rate of a particular reaction quadruples when the temperature changes from 293K to 313K. Calculate activation energy.

Ans. $K_2/K_1 = 4$,

$$Log [K2/K1] = Ea[T2-T1]/19.15$$

Thus on calculating and substituting values we get.....

$$Ea = 52.86 \text{ KJ mol}^{-1}$$

2. If the decomposition of nitrogen oxide as

$$2N_2O_5 \longrightarrow 4NO_2 + O_2$$

follows a first order kinetics.

Calculate the rate constant for a 0.05 M solution if the instantaneous (i) rate is 1.5 x 10⁻⁶ mol/l/s?

Ans. Rate = $K[N_2O_5]$

$$K = 1.5 \times 10^{-6}$$

Ans.

$$0.05$$
 K= 3.0×10^{-5}

ii) What concentration of N₂O₆ would give a rate of 2.45 x 10⁻⁵ mol L⁻¹s⁻¹

Rate =
$$2.45 \times 10^{-5} \text{ mol L}^{-1}\text{s}^{-1}$$

$$[N_2O_5] = \frac{\text{Rate}}{\text{K}} = \frac{2.45 \times 10^{-5}}{3.0 \times 10^{-5}}$$

ORDER

$$= 0.82 M$$

3) Write the difference between order and molecularity of reaction.

terms in the rate law expression.

It is determined experimentally

Order of reaction need not be a whole number

Order of reaction can be zero.

MOLECULARITY

It is the sum of the powers of concentration It is the number of reacting speci--es undergoing simultaneously Collision in a reaction.

it is a theoretical concept

It is whole no. only

It can't be zero or fractional

4) Define Threshold energy and activation energy. How they are related? **Ans. Threshold Energy:** It is the minimum amount of energy which the reactant molecules must possess for the effective collision in forming the products.

Activation Energy: It is the excess energy required by the reactants to undergo chemical reaction.

Activation energy = Threshold energy – Average kinetic energy of molecules.

5(a). Draw a schematic graph showing how the rate of a first order reaction changes in concentration of reactants.

Variation of rate of first order reaction with concentration.

(b). rate of reaction is given by the equation

Rate =
$$k [A] 2[B]$$

What are the units of rate constant for this reaction?

Ans. Rate = k [A] 2[B]

$$K = \frac{\text{mol } L^{-1}s^{-1}}{(\text{mol } L^{-1})^2(\text{mol}^{-1})}$$

 $K = \text{mol}^{-2}L^2s^{-1}$

- **6.** List the factors affecting the rate of reaction.
- **7.** Explain with suitable example, how the molecularity of a reaction is different from the order of a reaction.

- 8. Define the term 'rate constant' of 'specific reaction rate'.
- **9.** What are Pseudo unimolecular reactions? Explain with the help of a suitable example.
- **10.** What is half life period? Derive and expression for half-life period in case of a first order reaction.

3 marks question

Q1. The rate constant for first order reaction is 60/s. How much time will it take to reduce the concentration of the reaction to 1/10 of its initial value.

Ans:-

t =
$$\frac{2.303 \log [R_0]}{K}$$
 [R]
t= $\frac{2.303 \log [R0]}{1}$ [R]
t = $\frac{2.303 \log 10}{60}$
t = $\frac{2.303}{60}$ = 3.38X 10⁻²s⁻¹

2. The rate of most of reaction double when their temperature is raised from 298k to 308k. Calculate the activation energy of such a reaction.

Ans:-

$$Log \frac{K_2}{K_1} = \underbrace{\frac{E_a}{2.303 \text{ R}} \frac{1-1}{T_1}}_{2.303 \text{ R}}$$

$$Ea = \underbrace{2.303 \times 8.314 \times 298 \times 308 \times 0.3010}_{1000}$$

$$Ea = 52.89 \text{KJ/mol}$$

3. A first order reaction takes 69.3 min for 50% completion. Set up on equation for determining the time needed for 80% completion.

Ans.
$$K = \frac{0.693}{T^{1/2}}$$

= 0.693/69.3min
= 10^{-2} min⁻¹
$$T = \frac{2.303log [R_0]}{K}$$

 $T = 2.303/10^{-2} log 5$

T= 160.9min

4. Following reaction takes place in one step $2NO + O_2 \rightarrow 2NO_2$

How will the rate of the reaction of the above reaction change if the volume of reaction vessel is diminished to 1/3 of its original volume? Will there be any change in the order of reaction with reduced volume?

Ans.
$$2NO + O_2 \rightarrow 2NO_2$$

$$dx/dt = k*[NO]2[O2]1$$

[Since it is one step]

If the volume of reaction vessel is diminished to 1/3, conc. Of both NO and O2 will become 3 time, the rate of reaction increased 27 times. In the order of reaction with the reduced volume.

5. The decomposition of NH $_3$ on platinum surface is a zero order reaction. What are the rate of production of N $_2$ and H $_2$. If k= 2.5×10^{-4}

Ans.
$$2NH_3 \rightarrow N_2 + 3H_2$$
-1 d $[NH_3] = d[NH_2]$ + 1 d $[H_2]$
2 dt dt 3 dt

-d $[NH_3]$ = rate = k x $[NH_3]^0$
 dt
= 2.5 X 10^{-4} molL⁻¹sec⁻¹

d $[N_2]$ = -1 d $[NH_3]$
 dt 2 dt

= 1/2 X2.5X10⁻⁴ molL⁻¹sec⁻¹

d $[H_2]$ = -3 d $[NH_3]$ = 3/2 X2.5X10⁻⁴
 2 dt
= 3.75X10⁻⁴⁴molL⁻¹sec⁻¹

Rate = - d $[NH_3]$ = k X $[NH_3]^0$
 dt
= 2.5 X 10^{-4} molL⁻¹sec⁻¹

Rate of production of $N_2 = 2.5 \times 10^{-4} \text{ molL}^{-1} \text{sec}^{-1}$

- **6.** How is the rapid change in concentration of reactants/products monitored for fast reactions.
- 7. What are photochemical reactions? Give two examples,
- **8.** What is the effect of temperature on the rate of reaction? Explain giving reasons.
- Comment on free energy change of 'photochemical reactions'.
- **10.** State the role of activated complex in a reaction and state its relation with activation energy.

QUESTIONS CARRYING 5 MARKS

- **1.** What do you understand by the rate of a reaction? How it is expressed? How it is the rate of reaction determined?
- 2. What do you understand by order of a reaction? How does rate law differ from law of mass action? Give two example of each of the reactions of (i) zero order (ii) first order (iii) second order
- **3.** Derive the equation for the rate constant for a first order reaction. What would be the units of the first order rate constant if the concentration is expressed in mole per litre and time in seconds.
- **4.** Explain why the rate of reaction increases with increase in temperature.
- **5.** Briefly explain the effect of temperature on the rate constant of a reaction.

IMPORTANT QUESTIONS

- 1. The half-life period of two samples are 0.1 and 0.4 seconds. Their initial Concentrations are 200 and 50 mol L -1 respectively. What is the order of reaction?
- **2**. What is the ratio of $t_{3/4}$: $t_{1/2}$ for a first order reaction ?
- **3.** Higher molecularity reactions (viz. molecularity, 4 and above) are very rare. Why?
- **4.** Consider the reaction 2A + B > Products

When concentration of B alone was doubled, half life time does not change. When conc. of A alone is doubled, the rate increases by two times. What is the unit of K and what is the order of the reaction?

- **5**. For the reaction, the energy of activation is 75KJ / mol. When the energy of activation of a catalyst is lowered to 20KJ / mol. What is the effect of catalyst on the rate of reaction at $20^{\circ}C$.
- **6**. The gas phase decomposition of CH_3OCH_3 follows first order of kinetics $CH_3OCH_3 \rightarrow CH_4(g) + H_2(g) + CO(g)$

The reaction is carried out at a constant volume of the container at 500° C and has $t_{1/2}$ = 14.5min.

Initially only dimethyl ether is present at a pressure of 0.40 atm. What is the total pressure of the system after 12 min? Assume ideal behavior.

Q 7. See the graph and answer the following question

- 1). What is the order of rⁿ
- 2) what is the value of a and b

- q 8. 1) what is the order of rⁿ 2) what is the value of slope and intercept

q 9.1). what is the value of slope

